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Abstract
A new variant of the recently developed energy-partitioning scheme is
introduced, which allows us to give an interpretation of ab initio total energy
results in a chemical language. In this scheme the energy of the bonds between
atom-localized orbitals is represented by the covalent bond energy, which is
invariant with respect to a constant shift of the effective crystal potential. This
feature is a precondition for a comparison of the bond energies for various
crystal structures within the framework of a band structure calculation. The
implementation in a mixed-basis pseudopotential code is described, which
requires the projection of the crystal pseudowavefunctions onto a minimal set
of atom-localized non-orthogonal basis functions.

1. Introduction

Electronic structure calculations are an extremely powerful tool to predict many important
properties of materials, and they are applied routinely in fields ranging from biochemistry
to catalysis. However, although they yield the total energy very accurately the chemical
understanding of bonding as a localized phenomenon is sometimes lacking. Most of the
density functional theory programs are designed to yield the total energy but do not provide
the tools to analyse the local interactions between the constituent atoms, and, hence, do not
help us to understand the results.

Many attempts have been undertaken to track these local interactions beginning with
Mulliken’s [1] analysis, where the electron charge on a particular atom within a molecule
is written as a sum of charge which is localized on this particular atom and a charge which
is equally shared with all surrounding atoms. This concept of shared electronic charge has
been further developed and adapted to describe periodic structures by Hoffmann [2–4] (the
so-called crystal orbital overlap population, COOP) and has been applied to many different
systems including surface interactions in the framework of extended Hückel calculations. The
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major weakness of these approaches resides in the fact that the charge is partitioned and not
the energy. The bonding charge does not yield information about the bond strength since
the concept of strength is related to energy. The COOPs of Hoffmann have been modified
by Dronskowski and Blöchl [5] to partition the energy and not the charge, defining a true
bond strength (called crystal orbital Hamilton population, COHP) that can be applied when
an orthogonal basis is used. This concept has been successfully applied to extended Hückel
calculations recently [6, 7].

For non-orthogonal basis sets the COHPs cannot be used to characterize the bond strength
because they are not invariant against arbitrary shifts of the potential, which are routinely
performed in band structure calculations when comparing different crystal structures [8, 9].
Therefore, Börnsen et al [8,9] have introduced a new measure for bond strength, the covalent
bond energyEcov , which is invariant and which allows us to compare quantitatively the bonding
properties of different crystal structures when using orthogonal or non-orthogonal basis sets.
In section 2.1 of the paper we adopt a slightly different definition of the covalent bond energy,
which has a simpler physical interpretation while still being invariant against constant potential
shifts. Our procedure was inspired by the work of Sutton et al [10–12], where the bonding
properties of a solid are discussed within the framework of the tight-binding bond model. In
some sense, our energy-partitioning scheme is an extension of their scheme to the case of a
non-orthogonal basis set. The relation between the present energy-partitioning scheme and
the tight-binding bond model is discussed in section 2.2. In section 3 the implementation of
the scheme into a mixed-basis pseudopotential code is described.

2. A new energy-partitioning scheme

2.1. Definition of an invariant covalent bond energy

The starting point of our analysis is the expression for the total energy in density-functional
theory [13, 14]

Etotal = Eband + D + Eii. (1)

Here

Eband =
∑
n

fn〈�n|Ĥ |�n〉 (2)

is the band structure term, where the sum runs over all one-electron eigenstates �n, fn are the
occupation numbers and Ĥ denotes the self-consistent Kohn–Sham Hamiltonian. The second
term is the so-called double-counting term,

D = −
∫

n(r) Veff(r) d3r + EH + Exc +
∫

n(r)Vext(r) d3r (3)

where n(r) is the electron density, and EH, Exc, Veff and Vext denote the Hartree energy,
the exchange–correlation energy, the effective potential and the external potential. In an all-
electron calculation n(r) is the density of the valence and the core electrons, Vext describes the
potential of the nuclei and Eii denotes the interaction energy of the nuclei. In a pseudopotential
calculation n(r) is the density of the valence electrons, and then Vext describes the potential of
the ionic cores and Eii is the interaction energy of the ionic cores. We will refer to this latter
case in the following.

We want to analyse Etotal in the intuitive chemical language developed for molecules, i.e.
in terms of bonding and antibonding hybrid states between atom-localized orbitals. To do this,
we represent the crystal wavefunction �n(r) by a set of normalized atomic localized orbitals
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ϕiα(r) which are assigned to the atoms i located at the positions Ri and which have the orbital
character α characterized by the quantum numbers (l, m) for atom-like states (in the following
we consider only orbitals with the same principal quantum number for each l),

�n(r) =
∑
iα

Cn
iαϕiα(r − Ri ). (4)

An analysis of this type is self-suggesting if a localized basis set is used from the very beginning
for the solution of the Kohn–Sham equations. If the original basis set includes plane waves,
then the crystal wavefunctions �n must be projected (section 3) on a set of suitably defined
atomic-like orbitals ϕiα(r) for the succeeding chemical analysis of the total energy.

We first rewrite the band structure energy by inserting (4) into (1) and by adding and
subtracting the terms∑

n

∑
iα,jβ

[
fnc

n
iα

(
cnjβ

)∗
Ojβiα − N free atom

iα δjβ,iα
]
H free atom

iαiα (5)

and ∑
n

∑
iα,jβ

fnc
n
iα

(
cnjβ

)∗
OjβiαHiαiα. (6)

Here Ojβiα and Hiαiα denote the elements of the overlap and the (self-consistent)
Hamiltonian matrix, N free atom

iα is the number of electrons in the state α of the atom i when
it is isolated as a free atom and H free atom

iαiα denotes the eigenvalues of these states.
Second, the remaining terms in (1) are calculated by approximatingn(r) by a superposition

of the densities nfree atom
i (r − Ri ) of the corresponding free atoms, i.e.

n(r) =
∑
i

nfree atom
i (r − Ri ). (7)

It has been shown [15] that in this case the double-counting term D is given by a sum of atomic
contributions,

∑
i D[nfree atom

i (r)], a pair-potential contribution and a small remainder Emb

with many-body interactions. Finally, the energy of the free atoms before they are condensed
to the crystal is

Efree atom =
∑
iα

N free atom
iα H free atom

iαiα +
∑
i

D[nfree atom
i (r)]. (8)

With all these manipulations we can write the cohesive energy Ec = Etotal − Efree atom as

Ec = Eprom + Ecf + Epolar + Ecov + Epair + Emb (9)

where Epair is the sum of the pair-potential contribution to the double-counting term and the
term Eii of (1).

To elucidate the physical meaning of the various terms, we subdivide the physical process
of bonding of free atoms to a crystal into various steps. First, we redistribute the electrons
among the various orbitals from the occupation numbers N free atom

iα to the occupation numbers
which will be found in the crystal and which we characterize by the gross charge qiα of orbital
α corresponding to Mulliken’s analysis of the total charge,

qiα =
∑
jβ

∑
n

fn c
n
iα

(
cnjβ

)∗
Ojβiα. (10)

The cost in energy for this redistribution is described by the promotion energy

Eprom =
∑
iα

(
qiα − N free atom

iα

)
H free atom

iαiα . (11)

For instance, the atom configuration of the free carbon atom is 2s22p2 and changes in diamond
to 2s12p3 forming the well known sp3 hybrid orbitals.
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In a second step, we bring the atoms to their crystal positions but do not allow for a
hybridization between the orbitals. Then the on-site energies change because the potential
acting on an electron at atom i is not just the atomic potential of this atom but the environment-
dependent crystal potential, and the resulting change of the total energy is given by the crystal-
field term

Ecf =
∑
iα

qiα
(
Hiαiα − H free atom

iαiα

)
. (12)

In a third step, we allow for a hybridization of the orbitals localized at one atom, yielding
the polarization energy

Epolar =
∑
niαβ

fn c
n
iα

(
cniβ

)∗[
Hiβiα − δ

iβ

iαHiαiα

]
. (13)

Finally we allow for a hybridization of orbitals localized at different atoms, gaining the covalent
bond energy

Ecov =
∑
iα,jβ
j �=i

Ecov,iαjβ (14)

with

Ecov,iαjβ =
∑
n

fn c
n
iα

(
cnjβ

)∗ [
Hjβiα − Ojβiα εjβiα

]
(15)

εjβiα = 1
2

(
Hiαiα + Hjβjβ

)
. (16)

Ecov,iαjβ can be subdivided further into energy-resolved contributions,

Ecov,iαjβ(E) =
∑
n

δ(E − εn) fn c
n
iα

(
cnjβ

)∗ [
Hjβiα − Ojβiα εjβiα

]
(17)

where the εn denote the eigenvalues for the eigenstates �n. Ecov,iαjβ(E) is negative (positive)
for bonding (antibonding) states. The respective quantity integrated up to a certain energy E

will be referred to as

IEcov,iαjβ(E) =
∫ E

−∞
Ecov,iαjβ(E

′) dE′. (18)

The energy partitioning scheme introduced in the present section has the following benefit:
in a band structure calculation which deals with an infinitely extended periodic system the
average effective potential Veff(r) has no physical meaning, and it is usually set to an arbitrary
value for all the various crystal structures. Therefore, it is physically meaningful to analyse only
those energy contributions which are invariant against a constant shift of the effective potential.
This is fulfilled for Etotal, because a shift of the effective potential results in opposite shifts
of Eband and of the first term on the right-hand side of (3), which therefore compensate each
other. Furthermore, the terms Eprom, Epolar and Ecov of (9) as well as their atom- and orbital-
resolved contributions (and in addition the respective energy-resolved contributions to Ecov)
are all invariant. Because Ec is also invariant, this must hold also for the sum Epair +Emb +Ecf .
However, it is not possible to calculate separately the crystal-field term Ecf in a band-structure
calculation, becauseHiαiα is shifted by a constant shift of the effective crystal potential whereas
H free atom

iαiα is not. (For the calculation of H free atom
iαiα the effective potential is normalized to zero

for infinitely large distances from the nucleus.) It is therefore only meaningful to analyse the
terms Etotal, Ec, Eprom, Epolar, Ecov and Epair +Emb +Ecf . The covalent bond energy Ecov is the
only term with matrix elements involving orbitals on different atoms, and it therefore clearly
represents the contribution of the interatomic bonding. It will be the objective of part II of this
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paper to figure out whether the difference in the energetics of pure and doped TiAl3 and of
ScAl3 may be traced back to this term Ecov.

For systems with delocalized electronic states the�n are better represented by a set of plane
waves rather than by atom-localized functions. Alternatively, the �n can again be represented
by a set of atom-localized functions in this case also, but then often orbitals have to be included
which are not occupied in the free atom in order to make the basis set more complete. Then
formally a covalent bond energy Ecov can be calculated even for a nearly-free-electron system.
Whereas the term metallic conductivity is well defined, it is indeed a problem to discriminate
between metallic and covalent bonding (see, e.g., [16]). It is common practice to associate
metallic bonding with a situation with a more or less homogeneous charge density. However,
this simple classification overlooks the fact that a quasi-homogeneous charge density may
arise for situations which are electronically completely different. For instance, consider on
the one hand graphite. The bonding in this material may be well described by a tight-binding
basis which involves only orbitals (2s, 2p) which are already occupied in the free C atom.
Thereby the bonding between carbon atoms in the planes is mediated by sp2 hybrid orbitals,
whereas the p–π orbitals produce a more or less homogeneous charge distribution between
the planes. This situation is totally different from that in Li. If we want to describe the nearly
homogeneous charge distribution in this material by atomic orbitals we have to include very
many orbitals which are not occupied in the free Li atom. As a working hypothesis we define a
covalent bonding as a bonding which is dominated by the hybridization of those orbitals on the
various atoms which are already occupied in the respective free atoms. Note that this does not
necessarily mean that the corresponding charge-density difference plot exhibits directionality;
for example, it can be imagined that the pz orbitals of graphite do not necessarily create a charge
density with considerable directionality. Because our definition of Ecov is a generalization of
the covalent bond energy introduced by Sutton et al [10–12] to the case of non-orthogonal
basis sets we retain the historically founded nomenclature ‘covalent bond energy’, although
this quantity may also contain metallic bonding contributions in the above-defined sense.

In addition to the analysis with the above-discussed energy-partitioning scheme we shall
perform in part II an analysis with the well known charge partitioning scheme, i.e. in terms of
the bond order [3]

�iαjβ =
∑
n

fnc
n
iα

(
cnjβ

)∗
Ojβiα (19)

and in terms of the energy-resolved bond order [17], which is called COOP,

COOPiαjβ(E) =
∑
n

δ(E − εn)fnc
n
iα

(
cnjβ

)∗
Ojβiα. (20)

These quantities are in general positive (negative) for bonding (antibonding) states; i.e., they
are able to describe the character of a bond but do not give quantitative numbers for the
contribution of the bonds to the total energy.

2.2. Comparison with former definitions

In our former version of the energy-partitioning scheme [8, 9] the various terms have been
arranged in a slightly different manner, arriving at the equivalent expression

Ec = Ẽprom + Ẽcf + Ẽcov + Epair + Emb (21)

with

Ẽprom =
∑
iα

(
qiα − N free atom

iα

)
Hiαiα (22)
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i.e. H free atom
iαiα of Eprom has been replaced by Hiαiα ,

Ẽcf =
∑
iα

N free atom
iα

(
Hiαiα − H free atom

iαiα

)
(23)

i.e. the qiα of Ecf have been replaced by N free atom
iα and

Ẽcov =
∑
iα,jβ

Ecov,iαjβ (24)

i.e. the on-site contributions iαiβ have not been excluded from the covalent bond energy.
When comparing the definitions Eprom and Ecf , with the definitions Ẽprom and Ẽcf , it becomes
obvious that they correspond to a different succession of processes in a gedanken experiment
for the condensation of free atoms into the crystal. In the first case we promote the electrons
by redistributing them among the various orbitals of the free atoms and then we bring the free
atoms into the crystal positions (without allowing for a redistribution of the charge densities)
and experience a change in energy described by Ecf due to a shift of the on-site energies in
the crystal potential. In the second case we freeze the occupation numbers N free atom

iα when
bringing the free atoms into the crystal positions and calculate the crystal-field shift Ẽcf for
these circumstances, and then we allow for a redistribution of the electrons among the on-site
energy levels in the crystal potential. We think that the first case is closer to the commonly
used definitions of the promotion and the crystal-field energy, and we therefore prefer the new
variant of the energy partitioning scheme. Finally, we think that it is reasonable to exclude
the on-site hybridization contributions Ecov,iαiβ from the covalent bond energy because they
do not describe interatomic interactions. In the new variant these terms enter the polarization
energy, which also has a well defined physical meaning.

Sutton et al [10–12] have defined a covalent bond energy and a promotion energy within
the framework of the tight-binding bond model. The starting point for their discussion was
not the total energy of the density-functional theory evaluated for the self-consistent electron
density n(r), but the Harris–Foulkes functional [15, 18], where the band structure energy is
evaluated for a Hamiltonian Ĥ 0 constructed from an input charge density, for example from the
superposition of free-atom charge densities, whereas the double-counting term D is calculated
from the output charge density obtained for the eigenfunctions of the Kohn–Sham equations
for Ĥ 0. They arrived at the definitions

Ẽ′
prom =

∑
iα

(
q̃ ′
iα − N free atom

iα

)
H 0

iαiα (25)

with

q̃ ′
iα =

∑
n

fn c
n
iα

(
cniα

)∗
. (26)

Refrained from the difference between Ĥ and Ĥ 0, (25) coincides with (11) for an orthonormal
basis set, but it differs drastically for a non-orthogonal basis set because it totally neglects the
overlap population occurring in Mulliken’s gross charge, so that charge is lost in the promotion
process. The covalent bond energy was defined as

Ẽ′
cov =

∑
iα,jβ
j �=i

Ẽ′
cov,iαjβ (27)

with

Ẽ′
cov,iαjβ =

∑
n

fn c
n
iα

(
cnjβ

)∗
H 0

jβiα (28)

which—refrained from the difference between Ĥ and Ĥ 0—coincides with equations (14)
and (15) for an orthonormal basis set but which is different and not invariant against a potential
shift for a non-orthogonal basis set.
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3. Implementation for plane-wave band structure methods

When using a band structure method which represents the crystal wavefunctions �n = �kj

(k = wavevector, j = band index) from the very beginning by a set of atom-localized functions
then the analysis described in section 2 is straightforward. For instance, Börnsen et al [8,9] used
the tight-binding linear muffin-tin orbitals [19]. In our present calculations we used the mixed-
basis pseudopotential code [20–23], where the crystal wavefunctions �kj are represented by
plane waves and additional atom-localized orbitals, i.e.

ψkj (r) =
∑
G

α
kj
G

1√
�

exp (i(k + G)r) +
∑
νlm

β
kj
νlmφ

k
νlm(r) (29)

φk
νlm(r) =

∑
T

exp (ik(T + Rν))φνlm(r−T −Rν). (30)

Here G denotes reciprocal lattice vectors, � is the volume of the unit cell and the φk
νlm are

Bloch functions constructed from non-overlapping orbitals localized at the atoms at T + Rν ,
where T and Rν denote the translation vectors and the positions of the atoms ν in the respective
unit cells. For the systems under consideration we have chosen five 3d orbitals (distinguished
by m) per transition-metal atom. For a chemical analysis we project the crystal wavefunctions
onto a minimal basis of Bloch functions φ̃k

νlm constructed from overlapping atom-localized
non-orthogonal orbitals φ̃νlm(r−T −Rν). The crystal wavefunctions can be expressed as

ψkj (r) 
∑
νlm

c
kj
νlmφ̃

k
νlm (31)

with

c
kj
νlm = 〈φ̃k+

νlm|ψkj 〉. (32)

Here the φ̃k+
νlm are the Bloch functions of the conjugate basis, which are represented as

φ̃k+
νlm =

∑
ν ′l′m′

φ̃k
ν ′l′m′Õ

−1
ν ′l′m′, νlm(k) (33)

where Õ−1 is the inverse of the overlap matrix 〈φk
ν ′l′m′ |φk

νlm〉. In principle we can define Ecov,
Eprom, Ecf and Epolar in Bloch space by using the coefficients ckj

νlm obtained by the projection
according to (32). However, these quantities then would characterize the individual bonds
between the atom-localized orbitals φ̃νlm(r−T −Rν) only if large non-primitive unit cells
were used, because otherwise the bonding characteristics between two atoms in the unit cell
would intrinsically carry information about the bonds between the atoms located in the original
unit cell (T = 0) and all the equivalent atoms located at T +Rν , where T can be any translation
vector of the lattice. To obtain information about the bonding between two individual atoms
we have to start from a representation of the crystal wavefunctions by the individual atom-
localized orbitals φ̃νlm(r−T −Rν) as we did in section 2 (see (4) and the definition of Ecov,
Eprom, Ecf and Epolar derived from this representation), i.e.

�kj (r) 
∑
T νlm

c
kj
T νlmφ̃νlm(r−T −Rν) (34)

with the index i of (4) corresponding to (T ν), and with

c
kj
T νlm = c

kj
νlm exp (ik(T + Rν)). (35)

In terms of the coefficients ckj
νlm (15) may be written as

Ecov T νlm ν ′l′m′ = Re

{ ∑
kj

fkj c
kj
νlm

(
c

kj
ν ′l′m′

)∗
exp (ik(T + Rν − R′

ν))

×
[
H̃ν ′l′m′ T νlm − Õν ′l′m′ T νlm

(
Hν ′l′m′ ν ′l′m′ + Hνlm νlm

2

)]}
. (36)
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0 1 2
r [a.u.]

0

0.2

0.4

0.6

0.8

1

ar
bi

tr
ar

y 
un

its

3 4 5 6

Figure 1. Radial part of the atom-localized orbitals (solid curve) split into a modified Bessel
function (dotted curve) and a remainder (dashed curve).

Similarly, the Mulliken charges are calculated in terms of the c
kj
νlm via

qνlm = Re

{ ∑
kj

∑
T ν ′l′m′

fkj c
kj
νlm

(
c

kj
ν ′l′m′

)∗
exp (ik(T + Rν − R′

ν))ÕT ν ′l′m′ νlm

}
. (37)

Instead of calculating the matrix elements H̃ν ′l′m′ T νlm and Õν ′l′m′ T νlm directly in real space,
we first calculate the matrix elements H̃ν ′l′m′ νlm(k) and Õν ′l′m′ νlm(k) for the Bloch-transformed
orbitals φ̃k

νlm and then transform back by the inverse Bloch transformation

H̃ν ′l′m′ T νlm = 1

N

∑
k

exp (−ik(T − R′
ν + Rν))H̃ν ′l′m′ νlm(k) (38)

where N is the number of k-points in the first Brillouin zone used in the calculation. In the
mixed-basis pseudopotential code [20–23] a technique has been developed to calculate the
matrix elements for the Bloch-transformed orbitals φk

νlm constructed from non-overlapping
atom-localized orbitals φνlm(r−T −Rν) in a computationally efficient way. We want to use a
similar procedure for the Bloch-transformed matrix elements involving the overlapping atom-
localized orbitals φ̃νlm(r−T −Rν). To do this we decompose these orbitals into long-range
parts represented by modified Bessel functions and short-range and practically non-overlapping
remainders (figure 1), and the matrix elements are calculated partly in Fourier space, in real
space or in a mixed space.

For the atom-localized orbitals we chose

φ̃νlm(r−T −Rν) = Rνl(|r−T −Rν |) il Klm(r−T̂ −Rν) (39)

with

Rνl(r) = Cνl φ
PS
νl (λνl r)

{ (
1 − exp (−γνl(r

cut
νl − r)2)

)
for r � rcut

νl

0 for r � rcut
νl

(40)

where Cνl is a normalization constant, φPS
νl is the radial pseudo-atomic wavefunction

constructed according to Vanderbilt [24], λνl denotes a contraction factor and rcut
νl represents a

cut-off length. In part II we confine ourselves to a minimal basis set of 3d, 4s and 4p orbitals
for the transition metals and 3s, 3p and 3d orbitals for the Al atom.
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In principle, the parameters λνl , γνl and rcut
νl should be obtained according to Ritz’s

variational principle by minimizing for each considered atomic configuration the total energy.
Alternatively, one could fix the values of the parameters to those obtained from Ritz’s variational
principle for one special reference configuration. Both procedures would require us to calculate
the total energy and hence the Hamiltonian matrix elements with the overlapping atom-
localized orbitals from many combinations of parameter values. It has therefore become
customary [22,25–27] to choose the parameter values in such a way that the spillage is minimal,
which characterizes the loss of the norm of the wavefunctions due to the incompleteness of
the pseudo-atomic-orbital projection. It has been shown for several materials [26] that the
spillage correlates with the mean-square error in the energy bands obtained from the projected
Hamiltonian matrix, and therefore it is reasonable to assume that the minimization is often
close to a total-energy variational optimization. According to our experience, problems occur
for the case of Al when including the d orbitals in the minimal basis set. In this case the
minimization of the spillage yields d orbitals with very large spatial spread, which seems to
be unphysical and which renders the chemical analysis more difficult. However, it turns out
that the spillage increases only slightly and the quality of the band structure obtained from
the projected Hamiltonian matrix remains the same when contracting these d orbitals, at least
up to some limit where the spillage and the band structure deteriorate drastically upon further
compression. Indeed, the band structure would be considerably modified if the d orbitals were
completely omitted. To combine a good quality of the band structure with a good localization
of the d orbital of Al we therefore contracted the orbital up to that limit.
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